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Abstract cost or technology upgrades. Specifically, the approach
entails:

This paper describes a generic approach to mitigate
risk when reengineering for high throughput massively 1. defining the system requirements,

parallel systems. The approach entails baselining the 2. sizing an architecture using static benchmarks,
existing system, capturing the functional requirements,
estimating initial processing requirements through a high 3. allocating resources using systems engineering
level analysis, benchmarking a subset of the functionality tools,
on a low throughput computer, and modeling the high 4. developing a full scale model,
throughput application to determine the detailed
processing requirements for scaling. 5. validating the full scale model with dynamic

benchmarks,

1: Introduction 6. assessing the compatibility of the architecture
with the real-time embedded applications, and

"Once the architecture begins to take shape, the sooner 7. selecting the appropriate design approach based
contextual constraints and sanity checks are made on on a trade-off analysis.
assumptions and requirements, the better."

The tradeoff analysis incorporates an assortment of

Eberhardt Rechtin, Systems Architecting: design tools to expedite and facilitate the decision making
Creating & Building Complex Systems [1] process. Examples of tools used to date include: VHSIC

Hardware Description Language (VHDL), RDD-100 and

Commercial massively parallel processing (MPP) OMTool. The approach will integrate the systems

architectures offer a solution to TERAFLOP (one trillion engineering tools developed under the direction of the
operations per second) computing applications in the Naval Surface Warfare Center (NSWC) within the Office
Navy. Computing density (TERAFLOP/cubic foot) and of Naval Research's (ONR) Engineering of Complex
cost (dollars/TERAFLOP) have decreased in recent years; Systems (ECS) Block Program as they become available.
however, the challenge of real-time embedded processing The generic approach suits a myriad of applications
requirements poses a high risk for complex systems. The ranging from radar to sonar systems. Accordingly, air,

high risk relates to: inefficient match of applications to surface and subsurface platforms can benefit from the

architectures, low availability of high throughput approach outlined in this paper. This paper uses the case

architectures, the accuracy of forecasted downward study method to showcase the approach.
spiraling price projections, and immature software The case study method applies the generic approach to
development tools (e.g., parallelizing compilers). a practical application. This paper discusses one case

This paper proposes a generic approach to mitigate the study to demonstrate the utility of the approach. The
risk when investing in a specific MPP architecture. The research will explore additional case studies as interest
approach proposes a series of intermediate steps to assess arises.
the compatibility of the architecture and the requirements, This paper describes the case study, outlines the

Each step refines the assessment and leads to the final generic systems engineering design approach, presents
tradeoff study. The approach embodies reengineering high level architectural sizing techniques, and discusses
considerations when pursuing new implementations for detailed modeling and requirements allocation issues. The
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Figure 1. WAA Processing

Wide Aperture Array (WAA) beamforming problem Array system can provide an attractive capability. In
serves as the initial case study for the application of the addition, current fiscal requirements within the Navy (i.e.,

generic approach. The approach will evolve based on the the New Attack Submarine Program) have created the need
comments, suggestions and progress of research performed to significantly reduce the cost of the existing WAA
in the ECS Program under the direction of the Naval system.
Surface Warfare Center (NSWC). The WAA full detection concept conceived by

DePrimo and Choinski, and published in "An Efficient
2: Overview of WAA case study Approach to Systems Evolution (EASE)" [4], offers a

cost effective way to implement the inboard electronics
NUWC chose the WAA in-board electronics with additional full detection capability. This

application for two reasons. First, reengineering the WAA implementation serves as the case study for this paper.
system contributes to the incremental insertion of The implementation uses commercial massively
commercial off-the-shelf equipment (COTS) into parallel processing technology developed within the High
submarine warfare systems [2]. Second, a new Performance Computing and Communications (HPCC)
implementation for the WAA inboard electronics suite Program and made available under the Director of Defense
would fulfill the Navy's need to reduce cost, as well as Research and Development's (DDR&E) Defense
align with the Director of Defense Research and Modernization Plan.
Development's (DDR&E) thrust areas. Two of DDRE's Figure 1 illustrates the WAA signal processing
seven thrust areas emphasize Affordability, and Sea specified for the reengineering process. The signal
Control and Undersea Superiority [3]. Therefore, the processing includes additions to the existing WAA
reengineering of the existing WAA system responds to system.
changing cost and commercial technology requirements. This paper proposes a generic approach to mitigate the

This paper provides a brief description of the Wide risk when investing in a massively parallel architecture.
Aperture Array full detection system. As interest arises, The approach concentrates on the importance of constraints
the approach will incorporate diversified case studies and sanity checks throughout the design process.
based on other existing Naval systems.

The cost effective implementation of the in-board 3: System engineering approach
electronics for a Wide Aperture Array full detection
system serves as the primary objective for this case study. Figure 2 embodies the intent of Rechtin's heuristic, as
The WAA system can perform the detection function for a quoted at the beginning of the paper, by setting up a
submarine. Sea test data indicates the Wide Aperture process to assess the compatibility of the architecture and

2



Systems Reengineering Technology Workshop, February 8-10, 1994

INADEQUATE

SELECT DERATE ARCHITECTURESELECT INSTANTANEOUS

DOMAIN ALLOCATE
PUBU.&4ED SPECIFIC F

BENCHMARKS TO ARCHITECTURE
(STATIC) ELEMENTS

REQUIREMENTSEPRESNDATARTIES MLMN

BASELINE

Figure 2. Systems Engineering Design Approach

the requirements throughout the design process. Each step analysis consists of a combination of modeling, simulation
progressively refines the assessment. The approach and dynamic benchmarking.
includes reengineering considerations when systems Dynamic benchmarking entails the implementation of
engineers pursue a new implementation for cost or a processing subset on a scaled down MPP architecture.
technology upgrade reasons. In this manner, dynamic benchmarking reduces risk. The

The process starts with the definition of functional move from using a single processor to multiple processors
requirements and the selection of a candidate architecture. differentiates dynamic benchmarking from static
For reengineering problems like the Wide Aperture Array, benchmarking. Dynamic benchmarking also introduces
the process includes a step to characterize the existing partitioning, input/output (I/0) issues, and event driven
system. The existing system characterization provides the processing attributes.
baseline for the tradeoff analysis. In addition, the dynamic benchmarks validate the

An object oriented software design follows the detailed architecture models simulated in this step. The
functional specification. The inclusion of the object concept of using modeling, simulation and benchmarking
oriented design step translates functional requirements to for architecture validation was first introduced by Mufioz
objects suitable for software design. This step will of the Naval Undersea Warfare Center [5]. Figure 3
determine if object oriented design facilitates software elaborates on the allocation process identified in figure 2.
portability and reuse. In practice, a systems designer could After allocating the functions, the final tradeoff
bypass this step in favor of functionally based software analysis uses a set of previously defined metrics to
design. compare the performance of the proposed implementation

The sustained throughput and data rate estimates to the existing baseline system. The results of the tradeoff
follow the object oriented design. The throughput and analysis determine whether to accept, modify or eliminate
data rate estimates enable a preliminary architectural sizing the candidate architecture.
using the performance data from existing libraries or static
benchmarks. Static benchmarks provide single processor 3.1: Metrics
performance data for metrics like efficiency. Therefore, the
architecture sizing obtained at this point allows for an The basis of the tradeoff analysis rests with the
initial assessment of the instantaneous throughput levels extraction and comparison of metrics. Modeling and
quoted by manutactureis. simulation permit measurement of the metrics for the

Given the preliminary architectural sizing, the systems proposed system. The measured data can be compared to
designer can perform a detailed analysis of the architectural the existing system baseline data.
requirements for the given application. The detailed Numerous metrics have been identified for

consideration in the tradeoff analysis of MPP

3



Systems Reengineering Technology Workshop, FebruarY 8-10, 1994

TO ARCHISECTURE
L SELEMENTS

MM O D E LT 
R A D E -O F F

DE VIATED 
ANIA IIU L YSIS

THnOU GHP~ r II

COMPUTATIONAL, 
SPCII

LO A D E S TIM A TE S B EN C M AR S

Figure 3. Functional Requirements Allocation

architectures. Table I presents the MPP metrics and their first documented the WAA functional requirements
definitions. These metrics have been discussed in detail previously depicted in figure 1.
by Lee [6] and the team of Sweetman and Mufloz [7]. A systems engineering design tool like RDD-100 can
The design capture view metrics outlined by the ECS capture the functional requirements and facilitate
research block can also be added to this general list. traceability throughout the design process. Initially, a

word processor was used to capture the WAA
4: High level architectural sizing requirements; however, NUWC will also use tools like

RDD- 100.
The high level architectural sizing provides the RDD-100 brings several capabilities to the design

preliminary estimate for the size and configuration of a process including: requirements capture, functional
compatible architecture. The high level architectural sizing behavior modeling, full scale architecture modeling,
consists of four parts: resource allocation, dynamic analysis and documentation

of results. Other tools are also available to provide this
I. capturing functional requirements, capability.
2. baselining the existing system, 4.2: Baseline system characterization

3. generating an object oriented design,
Ideally, the systems design engineer should baseline

4. establishing a preliminary architectural sizing the existing system using metrics necessary to complete
from static benchmarks. the tradeoff analysis. Under these conditions, the designer

Once completed, these four steps lead to a detailed completes the tradeoff analysis by comparing the new and
architectural design and development. Unlike the detailed existing systems on equal footing.
design, the high level architectural sizing does not address Unfortunately, even the best documentation from a
software issues or partitioning of the functions. military system will fall short of supplying all the

previously defined metrics for the tradeoff analysis.
4.1: Functional requirements definition Design engineers document their work for development

and not reengineering purposes. Therefore, the tradeoff
The functional requirements definition phase of the analysis will embody comparisons between similar but not

generic system engineering design approach results in equivalent metrics.
system level specifications for the application. For the The reengineering process was initiated by using the
case study highlighted in the paper, a systems engineer design capture views established by the ECS Block to

capture the implementation of the existing WAA
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Table I. Metrics

1. Computation Bandwidth A description of the frequency of operations per unit time measured in
MFLOPS/second.

2. Communication Bandwidth A description of the 1/0 rate measured in MBytes/second.

3. Memory Bandwidth A measure of the memory access requirements per unit time
represented by Bytes/second.

4. FLOPS-I/O Ratio A ratio which compares the computation load(MFLOPS) to
the 1/0 (Bytes/sec) load.

5. Latency- FLOPS Product A characterization of the ability to support communications
requirements versus the computational bandwidth requirements of a module orý
architectural element.

6. Power/WeightlVolume Values used to characterize the physical attributes of a
system. Power is characterized by Watts, weight by pounds (Ib) and volume by

cubic feet (ft3 ).

7. dB/Watts A measure which combines process gain (dB), algorithm
efficiency, dB/gate-Hz, technology cost, gate - Hz/watts, architecture efficiency,
and percent duty cycle. An alternative is to use noise recognition differential
(NRD) instead of process gain for a measure of sonar system performance.

8. Architecture Diameter An integer which represents the maximum number of
communication paths that a message or data may be required to travel from
processor to processor.

9. Architecture Latency The maximum time, in seconds, a message takes to propagate
across the path that determines architecture diameter.

10. Processor Memory Ratio A ratio that captures the memory available to an individual
processor. For local memory systems the ratio would be the local memory per
processor. For shared memory systems the ratio would be computed by dividing
the total system memory by the number of processors and adding the amount of
local cache memory per processor.

11. Average Message Size A value computed by dividing the total number of message
per Processor bytes sent during the time it takes to execute an algorithm, divided by the number

of processors.

12. Response Time The time in seconds that is required to execute an algorithm.
The time begins when the first processor starts executing and ends when the last
processor stops executing.

13. Processor Utilization A percentage computed by dividing the sum of the individual
times that the processors are executing by the total time it takes to executc the

algorithm, times the number of processors in the system.
=tl +t2+t3+ ..... tn

NT

14. Program Size The size in bytes of the program.

15. Speed Up A value computed by dividing the response time for an
algorithm executing on a single processor by the response time for an algorithm
executing on several nodes in a system.
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system. The information presented in figures 4-7 takes place with the assistance of an object oriented design
illustraies the types of data documented for the existing tool like OMTool. Future versions of products like
system. These figures represent a sample of the data used OMTool will perform the functional to object oriented
for the baseline characterization of the Wide Aperture translation automatically; however, OMTool cannot
Array System case study. perform the translation at this time.

Although the existing baseline uses a distributed OMTool provides functional, object and data flow
processing architecture, some of the experiences can be views for a given application. In addition, the tool
carried over to the massively parallel processor produces C++ code. This paper neither endorses nor
architecture. For example, since trackers do not require denounces the use of OMTool. Engineers working on the
large amounts of throughput, the MPP implementation for WAA case, study use OMTool because of the features
trackers probably would not change significantly. Figures available for the given price range.
4-7 present four different views of the Wide Aperture Figure 8 illustrates the object oriented array system
Array System. Partitioning functions to resources has design. Figure 9 expands the object oriented beamformer
become the focal point for the case study because of its design. These diagrams represent a synopsis of the object
significance in massively parallel array architectures. oriented design which will be used to reengineer the WAA

system. Note that although the object oriented design
4.3: Object oriented design started with the WAA application in mind, the high level

software suits any array processing problem using a 2
The object oriented software design follows the stage time delay beamformer.

functional specification, and the existing system baseline. In the future a systems engineer specifying the
The inclusion of the object oriented step translates functional level requirements could expedite the object
functional requirements to objects suitable for software oriented design if a link was developed between tools like
design. Object oriented design should facilitate the reuse OMTool and RDD-100. The link could further automate
and portability of software. the design process. In addition, the link would also

Once the functional requirements have been designed, ensure the consistency of requirements between object
a software engineer determines the set of software objects oriented and system design tools.
necessary to achieve the desired functionality. An analysis
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Figure 8. Object Oriented Array System Design

BEAMFORMER
#BEAM DATA RECORDS(BEAM DATA:FLOAT. BEAM INDIEXID TYPE

+SELECT BEAM(BEAM INDEX:ID TYPE.BEAM DATA:FLOAT
+OUTPUT BEAM DATA(BEAM DATA:FLOAT. BEAM INDEX:ID TYPE)

On---(e Ia Many
BEAM

#BEAM INDEX:ID TYPE

#BEAM DATA VALUE:FLOAT

+SUM BEAM DATA FROM ROWS(ROW BEAM DATA, BEAM DATA VALUE)

#ROW NO:INTEGER
#ROW BEAM DATA ECORD(SENSOR NO:ID TYPE. SENSOR DATA:FLOAT)
#SHADING COEFFICIENT:INTEGER
#ROW SUM:FLOAT
4+CREATE ROW BEAM(ROW NO. ROW BEAM DAT
+INPUT SENSOR DATA SAMPLE FROM QUEUE(SENSOR ID. SENSOR DATA)
+APPLY SHADING(SENSOR DATA)
+DO ROW SUM(SENSOR DATA SAMPLES. ROW SUM)
+APPLY VERTICAL SHADING TO ROW SUM(ROW SUM)

SENSOR
#INTERPOLATED SENSOR DATA SAMPLE:FLOAT
#DELETE SENSOR:BOOLEAN
#SENSOR ID:INTEGER

+INPUT SENSOR DATA SAMPLE(DATA SAMPLE)
+STORE DATA SAMPLE(SENSOR ID. DATA SAMPLE)
+DO FINE TIME DELAY INTERPOLATION( SENSOR DATAf2]:FLOAT, BEAM INDEX)
+OUTPUT DATA SAMPLE(SENSOR ID. DATA SAMPLE)
+APPLY DELEE(DELETE SENSOR)

# Indicates attributes.
+ Indicates functions.

Figure 9. Object Oriented Beamformer Design
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4.4: Instantaneous Load Estimation and Static 2. software partitioning,
Benchmarking 3. full scale modeling, and

A preliminary sizing for the WAA case study 4. dynamic benchmarking.
demonstrates the application of instantaneous load
estimation and static benchmarking. The number of Technology independence means that it is possible to
floating point multiply and addition operations were retarget the softwaie. Partitioning involves dividing the
calculated for the functions identified in figure I. The processing into pieces which can run on individual
sustained throughput estimates in Table II reflect these processing elements.
multiply and addition estimates coupled with input data Massively parallel architectures can have an assorted
rates, collection of heterogeneous analog or digital processors.

Intel Corporation provided the efficiency and peak The program that runs the real-time embedded system
numbers in Table II based on Paragon single processor typically can have hundreds of thousands of lines of
implementations written in Fortran. The peak numbers do source code. The system is generally very complex.
not reflect scaling effects due to 1/0 and partitioning. As a difficult to design, and hard to maintain.
result, efficiencies for a final massively parallel version Large combat systems historically use a number of
would probably be lower. Therefore, Table II presents the heterogeneous processors connected in a distributed
results of a static benchmarking effort and represents a network structure. Continuing this trend would lead to
preliminary sizing for the WAA processing problem. expansive custom MPP architectures.
Basically, initial estimates indicate the WAA processing Custom MPP architectures have thousands of
requires a massively parallel architecture capable of processors connected as nodes in some kind of network
providing 36 GFLOPS of peak throughput. structure. Commercial processors like the Intel i860, Sun

Sparc, or DEC Alpha chip perform the processing
Table II. Static Benchmarking Load Estimation [8] functions in the nodes. Hypercube, mesh. hierarchical ring.

or tree topologies form the basis of the networks.
Operation Sustained Effigien.y Peak Companies like Intel, Thinking Machines and Kendall

Square Research have developed the MPP architectures
Beamforming 7.50 32% 23.44 into commercially available systems. These systems may

FIR Filters 0.54 25% 2.16 have homogeneous or heterogeneous processing elements.
The difference between commercial and custom MPP

Complex FFTs 2.02 56% 3.61 architectures lies in the user base. System engineers

Cross PSD 0.23 14% 1.64 optimize custom architectures for one specific application
for a limited market. Companies build commercialAuto PSD's 0.16 14% 1.14 architectures as products for a more generic user

Integrate Auto Spectra 0.01 14% 0.07 community. The commercial architectures may not fit a
particular application as well as a custom architecture;

Inverse Complex FFT 1.01 56% 1.80 however, the commercial architecture will fit a broader

Normalized XCOR/ 0.25 14% 1.79 range of applications. Table III characterizes custom and

Up Sample and commercial architectures.

Interpolate FIRs Table IlI. Custom Versus Commercial MPP

Total GFLOPS 11.72 35.65 Architectures

MPP 11/W S/W
5: Detailed modeling and requirements N" Cos Co i

allocation
Custom high high none

The detailed level modeling and requirements Commercial medium medium-high partial
allocation method provides a specific design for a MPP
architecture. The method presented in this paper addresses If MPP markets develop successfully, the hardware
four issues: cost of commercial MPP architectures will shrink faster

1. technology independence, than custom MPP architectures. The software
development costs of the custom architectures are

8
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Figure 10. Technology Independent Application

prohibitively high. Life cycle costs for custom
architectures are also high because of lack of portability. Scalability and partitionirig are correlated. Good
With appropriate research and development in the software partitioning methods generally lead to good
engineering of complex systems, the software for scaling. Generally, the efficiency and scalabiiity increase
commercial MPP architectures can achieve lower cost with effective software development techniques. Note
through partial portabilit,. One objective of the however, that this relationship is not linear and is
Massively Parallel System Design task is to address algorithm dependent.
detailed level MPP software mapping and portability.

Despite continuing research efforts in parallel 5.1: Technology independence
processing, two challenges exist for MPP architectures:

Technology independence presents a significant
I. The MPP scalability problem presents a major hurdle to real-time embedded MPP architectures. Figure

obstacle. Efficiencies from benchmarks with large 10 shows one approach for attaining technology
(thousands of processors) MPP architectures independence. In general, the objective and procedures are
measure less than 10%. For vector processors similar to other previous works. The uniqueness lies in
like the Cray supercomputer, the efficiencies the details of the methodology. The method concentrates
measure higher than 10%. These inefficiencies on using commercially available tools whenever possible.
create a high incentive to increase the speed-up of Many of these tools have graphical user interfaces.
MPP systems. Graphical interfaces facilitate the use of signal flow

graphs for representing real-time embedded applications.
2. The MPP programming problem necessitates a Node labels represent computation loads in the signal flow

significant up front development effort for graph. Directed edges symbolize data dependency in the
partitioning. Software engineers cannot program graph. Edge labels characterizes the communication delay
MPP architectures easily. One dominating issue of signals from node to node. Simple FIFOs between the
relates to the mapping process. The mapping nodes can represent communication delays for some target
process determines partitions and allocates architectures.
functions on MPP architectures. The absence of This kind of programming method uses block
automated mapping tools requires software diagrams, large grained data flow graphs, and synchronous
engineers to manually complete the mapping data flow graphs. The graphics facilitates the entry of a
process. digital signal processing (DSP) application. The task

9
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software may ie written in any procedural language so that I. task level function module parallelization (coarse

simulation of the function can be done on host processor grain),

before it is mapped into a target MPP system. 2. high level procedural language and messaging
This method meets the scalability and portable passing,

software challenges. Software engineers can use one of
three different techniques to program MPP architectures. 3. portable software for different MIMD MPPs. and

The first one takes a regular sequential program and 4. calibrated rformance metrics for maping-
compiles it for a MPP system. This technique is referred
to as the parallelizing compiler approach. The sLnond After graphic entry and host function simulation a
recodes the program in a parallel language such as mapping procedure is required before the program can run
LINDA, FORTRAN 90, or functional (applicative) on a MPP system. Figure 10 shows a set of MPP
language. This technique is called parallel languages. The architectures. MIMD with distributed memory and
first technique does not require a large effort when message passing are our target systems. The Mapping
rewriting software. A parallelizing compiler capable of Procedure consists of partition and allocation.
dealing with thousands of lines of code simply does not For MIMD with distributed memory and message
exist, and the ones available for small programs suffer from passing, scheduling may be done at the compile time.
performance problems. The second approach requires a Unlike real-time scheduling, compile time scheduling is
new culture for programmers. However, using parallel the most straightforward way to handle the real-time
language still falls short of acceptable performance. requirement which dominates military applications.

The third approach follows the message passing
methodology which involves explicit parallel environment 5.2: Partitioning
control. Hence, the third technique is called message
passing. The programming takes place in an environment The Calibrated mapping performance prediction
like PVM or EXPRESS with utilities to handle parallel paradigm (CMPP) leads to detailed modeling allocation.
message passing. The last technique requires some user The CMPP paradigm is discussed in this section of the
awareness of the topology of the MPP architecture, but it paper
can achieve the highest scalability and efficiency. Table Because of a large and multidimensional solution
IV describes the software techniques. space, heuristic methods provide the first pass solution.

Therefore, automation and design aids would expedite a
Table IV. MPP Software Approaches broader seaich of a good solution for the total system

design.
-u - Technology independence depends also on the MPP

Parallelizing Compiler Not Proven Automatic mapping procedure. Mapping involves partitioning and
allocating function modules on the MPP architecture. The

Parallel Language < 0.01% Automatic absence of parallelizing compilers and languages leaves

Message Passing 1% - 10% Manual only design aids to ease the mapping process. The user
has to couple the procedural modules with message

Unfortunately, automatic mapping technology for passing operations. The process is slow when the user has

partitioning and allocation does not exist. Good to do a manual mapping for all the pieces (thousands). as

performance in programming MPP architectures relies on well as run the MPP execution to decide whether the

tedious manual mapping methods, mapping works. Figure I I shows this mapping procedure

Single Instruction Multiple Data (SIMD) MPP and in detail. This cycle will be repeated to optimize each

the Multiple Instruction Multiple Data (MIMD) MPP performance metric.

architectures further complicate the portability challenge. This paper proposes a calibrated mapping

SIMD MPPs encompass the connection machine and the performance prediction paradigm. Figure 12 illustrates the

MASPAR architectures. MIMD MPPs consist of the paradigm. The key idea concentrates on performance

iPSC 860, CM-5, DSP-3, and Paragon shown in Figure model simulation. Rather than do a functional execution

10. This paper concentrates on MIMD architectures. on full scale MPP to collect dynamic performance metric

The four salient features for the portable massively data, the benchmark is collected from model simulation.

parallel systems design (MPSD) method discussed in this The full scale model then provides estimates of the

paper include: architectural performance in terms of the previously
defined metrics.

10
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The FLOPS-I/O ratio characterizes the proportion of
5.3: Full scale modeling computation done versus communication (I/O) required in

the partition. The ratio can characterize the architecture
The performance model requires two kinds of element once maximum throughput requirements are

modules: the execution module (EXEC), and the fulfilled. If the peak FLOPS-I/O ratio of an architecture
communication module (COMM). The execution time element is less than that of the applica.Xn module, it is
metric as the initial focus, since execution time is directly possible to fit the application module into the element. If
related to the speed up in MPP architectures. EXEC load, the peak FLOPS-I/O ratio of an element is greater than the
EXEC bandwidth, COMM load, and COMM bandwidth application module, the partition will encounter problems.
characterize these modules. The host program estimates Essentially, the FLOPS-I/O ratio characterizes
the EXEC load and COMM loads for all the partitioned computational activities relative to communication
pieces of a specific mapping. The collected data become activities. With this metric, it will be easier to analyze the
model parameters to annotate the performance model before results of different mapping processes by examining
simulation. Each new partition requires repetition of the granularity. One definition of fine grain tasks refers to
load estimation and extraction process. Any automation small FLOPS-I/O ratios. Fine grain application modules
that can be added would be desirable. can only be efficiently accommodated in fine grain

EXEC modules and COMM modules are used to architecture elements.
build the performance model with token networks. The The FLOPS-I/O ratio metric makes it possible to find
token network handles multiple transmitters like real a common partition of an application for a set of MPPs.
network situations. Presently the model can only handle The common partition usually can not achieve the best
Ethernet simulation. Construction of the performance speedup and efficiency in a specific MPP, but the partition
model is done in the graphics mode. The VHDL feature can be accommodated in a number of MPPs. Further
simplifies the replication of thousands of identical development of the CMPP paradigm will demonstrate this
modules. The Calibrated Mapping Performance Prediction situation in the future.
(CMPP) paradigm hides many of the details of message A collection of Sparc workstations on an Ethernet
passing so that the designer can concentrate on the was used to demonstrate the CMPP approach during 1993,
partition and allocation problems. The right environment since the researchers did not have access to a commercial
enables replication the modules many times. This MPP architecture. The researchers also used a message
environment reduces the problem of scaling to thousands passing development environment called EXPRESS.
of processors. EXPRESS addresses the portability challenge for the

The CMPP paradigm discussed in this paper used the CMPP paradigm.
VHDL environment. Note that VHDL is not used here for The development consists of three parts. First, the
hardware design; instead VHDL allows the designer to EXEC module characterizes a piece of the execution that
construct the structure, simulate the performance, and occurred in the architecture element of the MPP. EXEC
collect metric data. Both PC's and workstations support modules represent a source that generates a load token, a
VHDL environments at low cost. VHDL will be available feed-through that accepts input tokens and produces
for hardware and system design for a long time. In output tokens, or a sink that consumes a load token. The
addition, constructs of the VHDL language can replicate following VHDL parameters characterize EXEC modules:
modules as shown in Figure 12 in a straight forward
manner. VHDL generic constructs also help annotate INST => unique module name
model parameters before simulation. The manual Unit => I Kbytes
EXEC/COMM load estimation and extraction is a Sizeinfo => statistic size in units
disadvantage of the CMPP paradigm. An automatic Throughput-info => (#/sec) statistic throughput rate
procedure would strengthen the CMPP paradigm. Latency-info => statistic delay (usec.)

The CMPP paradigm allows the partition and * Duty-cycle-info=>(#/sec) statistic duty
allocation results to be portable to different types of cycles
MPPs. Remapping is necessary due to different network * Only relevant for source EXEC modules.
bandwidths, topologies and throughput rates in different
MPPs. However the CMPP minimizes the portability Figure 13 shows a VHDL structure for the modules.
effort as much as possible. The CMPP paradigm reduces The left most block depicts a source EXEC module, and
the effort needed to run a real-time embedded application the right most one a sink EXEC module. The INST
on different MPP architectures. generic describes a unique name for the module in the

model. The size *unit characterizes the load of execution.

12
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The term "unit" represents the basic data size such as in The ebiu is in turn built from two sub modules: Local
bytes or Kbytes. The throughput characterizes the speed and Globalnet. The sub module structure is shown in
of this EXEC module. The latency feature permits a more Figure 14. The VHDL environment can build these
accurate delay account. Duty cycle is relevant if the entities, module structures, and sub module structures
EXEC module is a source that generates periodic loads, hierarchically. Graphics windows permit editing,

checking, and simulation. The bottom level behavior of
the EXEC or COMM modules are written in VHDL.

F out Sourc L BI NetFG SLB kiP 5.4: Dynamic benchmarking

Dynamic benchmarking helps to validate the full scale
S Smodels. The data from the dynamic benchmarks help

refine the siraulation models to reduce the risk associated
with the scaling process. Due to the lack of availability of

Figure 13. A Structure of EXEC Modules, COMM a commercial MPP architecture during 1993, the Naval
Modules, and Ethernet Postgraduate School researchers explored the CMPP

paradigm using Sun Workstations connected by Ethernet.
Figure 13 shows two COMM modules called ebiu. One important feature in the CMPP paradigm

The COMM module can receive or transmit to or from a involves the calibration process for EXEC/COMM model
local port. The data transfer on the glob,0' - :-1 is also bi- parameters. The calibration process requires dynamic
directional. The following VHDL generics characterize the benchmarking for fine tuning. The EXEC/COMM
COMM module: parameters are extracted from a functional program. The

results enable calibration of the model. The calibration
INST => unique module name process refers to the adjustment of parameters by
bw_unitpersec => unit size (byte) comparing a benchmark from the CMPP prediction to the
bandwidthinfo => statistic bandwidth (byte/sec) parameters from the actual execution. The calibration
Txlatency-info => statistic transmit latency delay process ensures the validity of the model.

(usec)
Rxlatency-info => statistic receive latency delay

(usec) Measured
Bus_timeoutinfo => statistic time-out (usec) 700- --- dc--

Ack-timeinfo => statistic acknowledgment time
(usec) 504

Bandwidth and bw-unit_persec characterize the
channel limitation of the bus. For the case of Ethernet, 300-
part of the Ethernet features reside in the COMM module,
and the other features like arbitration reside in the token
signal resolution function. 100L.

The VHDL resolution function is a special facility lo0o 10000 100000
available in the VHDI. language that handles multiple Message Size (bytes)
signal drivers. The signals in this model are all data token
types. A special VHDL resolution function is
implemented to model the Ethernet. Figure 15. Ethernet Delay for Versus Message Size

The crucial step for the experiments developed during

LB Datal Rv Rcv DataO 1993 was to model and characterize the Ethernet correctly.
-,,c:> DDThe aforementioned calibration process tuned the COMM

Local Tx Tx Global modules (ebiu). Figure 15 presents the actual message
delays and the model predictions. The message size varied
from 1 Kbyte to 32 Kbytes. The predicted and measured
data matched very well. The model parameters that yielded

Figure 14. Ebiu Sub Module Structure this prediction consist of:

13



Systems Reengineering Technology Workshop, February 8-10, 1994

bwunit._per.sec => byte are executed in the host. The diagram shows that the
bandwith info => 48,000 largest execution load occurred in the Vector-Matrix
Txlatency-info => 41.280 ms module. The heaviest traffic on the Ethernet was the
Rxlatency-info => 10.000 ms message shuffle between the FFT and Vector-Matrix
Ack_time_info => 41.280 ms modules. The information in figure 17 was accumulated
bustimeoutinfo => 10 sec using the Sun operating tcov command. COMM loads

were estimated using EXPRESS profilers.
In addition to the Ethernet modeling, two The parallel EXPRESS environment can also provide

beamformers were coded and tested. One beamformer used an event profile which shows the communication
a frequency domain algorithm, and the other a time domain activities, and the execution activities of the processors.
algorithm. The time domain algorithm reflects the type After the analysis, the next step is to construct a
used in the Wide Aperture array system. partition structure in the VHDL environment that

The frequency domain bearnformer demonstrated the simulates the performance. A structure for the 8-node
advantage of using MPP systems. The hypothetical partition was developed. The objective is to be able to
beamformer assumed 96 sensors in the system. Beam predict performance such as execution time shown in
response covered 0 to 180 degrees with I degree figure 16. Progress is ongoing and encouraging.
resolution. A host program in FORTRAN 77 was written
and checked with the test data to assure correctness. The Communication
mapping procedures outlined in this paper were used to Execution Load Load
partition and execute the application under the parallel (FLOPs) (Bytes)
EXPRESS environment. The metric plotted in figure 16
is the execution time. This mapping procedure was 203 Host 6,888
repeated for 1, 2, 4, 6, and 8 architecture elements on the I/P
network of workstations. The results show that increasing
processing elements decreases the execution time.100000 1,828,052 FFT 43,008

100000-

800001 Vector
5,544,362 Matrix 23,040

60000- Product

S40000, -
H ost

20000 Display

0
0 2 4 8 10 Figure 17. EXEC and COMM Loads for an 8-

Number.... .jc. 3ors Processor Partition

A single panel of the WAA beamformer was also
programmed during 1993. The WAA program includes

Figure 16. Execution Time Versus Number of test data generation, time delay memory, 1:3 interpolation,
Processors full beam vertical shading, and beam summation. The

program has been tested and verified.
Figure 17 exhibits the computational and EXPRESS will be used to map the application to the

communication loads for the frequency domain Sun Workstation environment. Table V reveals
beamformer. The loads were estimated and extracted as preliminary execution time data for the WAA beamformer
described in the CMPP paradigm in Figure 12. These program on three high speed computers: the Sparc 630MP
estimates represent the loads for each processor. (2 processors), the Navy TAC-3 (HP 900/730), and the

The two main execution modules are: the FFT module Cray YMP/EL. The Cray yielded the best execution time,
and the Vector-Matrix product module. The other modules but the TAC-3 yielded the smallest execution code size.
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The TAC-3 is about 10 times slower than the Cray 4. scalability of massively parallel architectures,

YMPIEL. but requires 25 times less code. 5. availability of commercial massively parallel

TABLE V. Time Domain Beamformer Benchmark

6. suitability of the massively parallel systems
Execution Execution design approach to other case studies.

Acietr T~m sec) Code (Bytes)

Research will continue to pursue the massively
Sparc 630MP (2 processors) 833.8 237,568 parallel system design framework discussed. Plans

TAC-3 (HP9000/730) 339.6 32,768 encompass implementation, modeling, benchmarking and
simulation of the Wide Aperture Array functions. A

Cray YMP/EL (4 processors) 35.4 802,320 continued focus will be placed on using tools like VHDL,

RD-100 and OMTool, in addition to integrating tools
6: Summary emerging from the Engineering of Complex Systems

Block Program.
This paper proposed a generic approach to mitigate

the risk when investing in a specific MPP architecture. Acknowledgment
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